

On Performing Countably-Many Reidemeister Moves

Forest Kobayashi

April 23rd, 2021

intro 000000000000000 Motivation 00000 Countable Reid. Moves 00000000000000

Where are we headed?

Forest Kobayashi On Performing Countably-Many Reidemeister Moves

Countable Reid. Moves 00000000000000

Where are we headed?

(a) What distinguishes this...

 $(b) \dots$ From this?

 $\mathbf{Preamble}_{\mathbf{0}}$

Motivation 00000 Countable Reid. Moves 00000000000000

On Performing Countably-Many Reidemeister Moves

Gameplan:

- 1. Intro
 - "What's a knot?"
 - "When are knots 'equivalent?' How can we tell?"
- 2. Motivation
 - Unknotting moves & "categorification"
- 3. The problem
 - Tameness & wildness
 - The recipe!

Definition (Informal)

Definition (Informal)

Definition (Informal)

Definition (Informal)

Definition (Informal)

Definition (Informal)

Definition (Informal)

Definition (Informal)

Countable Reid. Moves 00000000000000

Prereq. Definition — Homeomorphism

Definition (Homeomorphism)

A homeomorphism is an $f: X \to Y$ such that f is bijective and continuous with f^{-1} also continuous. (i.e. f does no cutting/gluing).

Countable Reid. Moves 00000000000000

Prereq. Definition — Homeomorphism

Definition (Homeomorphism)

A homeomorphism is an $f:X\to Y$ such that f is bijective and continuous with f^{-1} also continuous.

Countable Reid. Moves 00000000000000

Prereq. Definition — Homeomorphism

Definition (Homeomorphism)

A homeomorphism is an $f: X \to Y$ such that f is bijective and continuous with f^{-1} also continuous. (*i.e.* f does no cutting/gluing).

Example 1:

Countable Reid. Moves 00000000000000

Prereq. Definition — Homeomorphism

Definition (Homeomorphism)

A homeomorphism is an $f: X \to Y$ such that f is bijective and continuous with f^{-1} also continuous. (i.e. f does no cutting/gluing).

Example 2:

Prereq. Definition — Homeomorphism

Definition (Homeomorphism)

A homeomorphism is an $f: X \to Y$ such that f is bijective and continuous with f^{-1} also continuous. (*i.e.* f does no cutting/gluing).

Non-example 1: "Cutting" (f is not continuous)

 Motivation 00000 Countable Reid. Moves 00000000000000

Prereq. Definition — Homeomorphism

Definition (Homeomorphism)

A homeomorphism is an $f: X \to Y$ such that f is bijective and continuous with f^{-1} also continuous. (*i.e.* f does no cutting/gluing).

Non-example 2: "Gluing" $(f^{-1} \text{ is not continuous})$

Prereq. Definition — Homeomorphism

Definition (Homeomorphism)

A homeomorphism is an $f: X \to Y$ such that f is bijective and continuous with f^{-1} also continuous.

- ▶ Homeomorphisms preserve how things look "locally"
- ▶ X and Y are said to be *homeomorphic* if there's a homeomorphism $f: X \to Y$

 Motivation 00000 Countable Reid. Moves 00000000000000

Prereq. Definition — Embeddings

Definition (Embedding)

 $f: X \to Y$ is an *embedding* if f is a homeomorphism between X and f(X). (Since f must be injective we typically write $f: X \hookrightarrow Y$)

Example 1: X is an X shape, Y is \mathbb{R}^2

Prereq. Definition — Embeddings

Definition (Embedding)

 $f: X \to Y$ is an *embedding* if f is a homeomorphism between X and f(X). (Since f must be injective we typically write $f: X \hookrightarrow Y$)

Example 2: X is [0,1], Y is \mathbb{R}

On Performing Countably-Many Reidemeister Moves

 Motivation 00000 Countable Reid. Moves 00000000000000

Prereq. Definition — Embeddings

Definition (Embedding)

 $f: X \to Y$ is an *embedding* if f is a homeomorphism between X and f(X). (Since f must be injective we typically write $f: X \hookrightarrow Y$)

Example 3: X is [0,1], Y is \mathbb{R}^2

Prereq. Definition — Embeddings

Definition (Embedding)

 $f: X \to Y$ is an *embedding* if f is a homeomorphism between X and f(X). (Since f must be injective we typically write $f: X \hookrightarrow Y$)

Non-example: X and f(X) not homeomorphic (note the gluing!)

Prereq. Definition — Embeddings

Definition (Embedding)

 $f: X \to Y$ is an *embedding* if f is a homeomorphism between X and f(X). (Since f must be injective we typically write $f: X \hookrightarrow Y$)

- ▶ Takeaway: An embedding stuffs a copy of X into Y
- ▶ How can we use this to define knots?

Preamble	Intro	Motivation	Countable Reid. Moves
00	0000000000000	00000	

Definition (Knot)

A knot is an embedding $f: S^1 \hookrightarrow Y$. (For now assume $Y = \mathbb{R}^3$).

Preamble	Intro	Motivation	Countable Reid. Move
00	00000000000000	00000	00000000000000

Definition (Knot)

A knot is an embedding $f: S^1 \hookrightarrow Y$. (For now assume $Y = \mathbb{R}^3$).

Example 1:

Figure: The "(3,1)" knot

Preamble	Intro	Motivation	Countable Reid. Move
00	00000000000000	00000	

Definition (Knot)

A knot is an embedding $f: S^1 \hookrightarrow Y$. (For now assume $Y = \mathbb{R}^3$).

Example 2:

Figure: The "(7,2)" knot

Preamble	Intro	Motivation	Countable Reid. Move
00	0000000000000	00000	00000000000000

Definition (Knot)

A knot is an embedding $f: S^1 \hookrightarrow Y$. (For now assume $Y = \mathbb{R}^3$).

Non-example 1: f is not an embedding ("cutting")

Figure: A "broken" knot

Preamble	Intro	Motivation	Countable Reid. Moves
00	000€0000000000	00000	00000000000000

Definition (Knot)

A knot is an embedding $f: S^1 \hookrightarrow Y$. (For now assume $Y = \mathbb{R}^3$).

Non-example 2: f is not an embedding ("gluing")

Figure: A "broken" knot

Definition (Equivalence of Embeddings in General)

Let $f_0, f_1 : X \to Y$ be embeddings. We say that f_0 is *equivalent* to f_1 if there exists a homeomorphism $h: Y \to Y$ such that $h \circ f_0 = f_1$.

Definition (Equivalence of Embeddings in General)

Let $f_0, f_1 : X \to Y$ be embeddings. We say that f_0 is *equivalent* to f_1 if there exists a homeomorphism $h: Y \to Y$ such that $h \circ f_0 = f_1$.

Example: Consider two embeddings of an X shape.

Definition (Equivalence of Embeddings in General)

Let $f_0, f_1 : X \to Y$ be embeddings. We say that f_0 is *equivalent* to f_1 if there exists a homeomorphism $h : Y \to Y$ such that $h \circ f_0 = f_1$.

Example: These are equivalent. The \boldsymbol{h} would look something like

Definition (Equivalence of Embeddings in General)

Let $f_0, f_1 : X \to Y$ be embeddings. We say that f_0 is *equivalent* to f_1 if there exists a homeomorphism $h: Y \to Y$ such that $h \circ f_0 = f_1$.

Equivalence is *heavily* dependent on Y.

Definition (Equivalence of Embeddings in General)

Let $f_0, f_1 : X \to Y$ be embeddings. We say that f_0 is *equivalent* to f_1 if there exists a homeomorphism $h: Y \to Y$ such that $h \circ f_0 = f_1$.

Equivalence is *heavily* dependent on Y.

Example 1: In \mathbb{R}^2 , all embeddings of S^1 are equivalent. Even this can be turned into a normal circle!

Definition (Equivalence of Embeddings in General)

Let $f_0, f_1 : X \to Y$ be embeddings. We say that f_0 is *equivalent* to f_1 if there exists a homeomorphism $h: Y \to Y$ such that $h \circ f_0 = f_1$.

Equivalence is heavily dependent on Y.

Example 2: This embedding is "nontrivial" in a thickened torus, but not in \mathbb{R}^3

Knot equivalence

Definition (Equivalence of Embeddings in General)

Let $f_0, f_1: X \to Y$ be embeddings. We say that f_0 is equivalent to f_1 if there exists a homeomorphism $h: Y \to Y$ such that $h \circ f_0 = f_1$.

Equivalence is *heavily* dependent on Y.

Example 3: All "nice" $f: S^1 \hookrightarrow \mathbb{R}^4$ are equivalent! (Proof: Ask at end if we have time) In fact...in most "nice" cases, knotting can only occur when $\dim(Y) - \dim(X) = 2$

Knot equivalence

Definition (Equivalence of Embeddings in General)

Let $f_0, f_1 : X \to Y$ be embeddings. We say that f_0 is *equivalent* to f_1 if there exists a homeomorphism $h: Y \to Y$ such that $h \circ f_0 = f_1$.

Situation for $f:S^1 \hookrightarrow \mathbb{R}^3$ is the most studied

Example: First two are equivalent, but not to the third

 Problem: Working with homeomorphisms explicitly is *incredibly* unergonomic.

Problem: Working with homeomorphisms explicitly is *incredibly* unergonomic.

 Desire: A *rigorous* way to work with knots only using pictures (no equations!)

▶ Solution: Regular Diagrams and Reidemeister's Theorem

Preamble	Intro	Motivation	Countable Reid. Moves
00	00000000000000	00000	00000000000000

Definition (Regular Diagram)

A regular diagram for a knot $f:S^1 \hookrightarrow \mathbb{R}^3$ has

- 1. Finitely-many crossing points,
- 2. Only two strands interacting at any given crossing,
- 3. Only "transverse" crossings.

Preamble	Intro	Motivation	Countable Reid. Moves 000000000000000000000000000000000000
00	00000000000000	00000	

Definition (Regular Diagram)

A regular diagram for a knot $f:S^1 \hookrightarrow \mathbb{R}^3$ has

- 1. Finitely-many crossing points,
- 2. Only two strands interacting at any given crossing,
- 3. Only "transverse" crossings.

 \checkmark Allowed

✗ Not allowed

Figure: Example of axiom 1

Preamble	Intro	Motivation	Countable Reid. Moves
00	00000000000000	00000	0000000000000

Definition (Regular Diagram)

A regular diagram for a knot $f:S^1 \hookrightarrow \mathbb{R}^3$ has

- 1. Finitely-many crossing points,
- 2. Only two strands interacting at any given crossing,
- 3. Only "transverse" crossings.

✓ Allowed

 $\pmb{\varkappa}$ Not allowed

Figure: Example of axiom 2

Preamble	Intro	Motivation	Countable Reid. Moves 000000000000000000000000000000000000
00	00000000000000	00000	

Definition (Regular Diagram)

A regular diagram for a knot $f:S^1 \hookrightarrow \mathbb{R}^3$ has

- 1. Finitely-many crossing points,
- 2. Only two strands interacting at any given crossing,
- 3. Only "transverse" crossings.

Important note

Not every knot has a regular diagram.

Figure: This one doesn't!

Which do?

Definition (Polygonal knot)

Let $f: S^1 \hookrightarrow \mathbb{R}^3$. If f is a finite union of straight-line segments, we say f is a polygonal knot.

Which do?

Definition (Polygonal knot)

Let $f: S^1 \hookrightarrow \mathbb{R}^3$. If f is a finite union of straight-line segments, we say f is a polygonal knot.

Example:

Which do?

Definition (Polygonal knot)

Let $f: S^1 \hookrightarrow \mathbb{R}^3$. If f is a finite union of straight-line segments, we say f is a polygonal knot.

Theorem

If $f: S^1 \hookrightarrow \mathbb{R}^3$ is polygonal, then f admits a regular diagram.

Proof: Use the finiteness

Tame & Wild Knots

Definition (Tameness)

Let $f: S^1 \hookrightarrow \mathbb{R}^3$. Then if f is equivalent to a polygonal knot, we say f is *tame*. If there exists no polygonal equivalent, we say f is *wild*.

Tame & Wild Knots

Definition (Tameness)

Let $f: S^1 \hookrightarrow \mathbb{R}^3$. Then if f is equivalent to a polygonal knot, we say f is *tame*. If there exists no polygonal equivalent, we say f is *wild*.

Example tame knot:

Tame & Wild Knots

Definition (Tameness)

Let $f: S^1 \hookrightarrow \mathbb{R}^3$. Then if f is equivalent to a polygonal knot, we say f is *tame*. If there exists no polygonal equivalent, we say f is *wild*.

Important property:

- Tame knots are in equivalence classes of knots with regular diagrams.
- ▶ Why does this matter? Well...

Almost there! Equivalence of Diagrams

Definition

We say two regular diagrams D_0 , D_1 are *equivalent* iff there exist a finite sequence of the following moves taking D_0 to D_1 :

Figure: The "Reidemeister moves"

Not relevant for today, but I like to denote these by \mathcal{O} (no; [no]), \mathfrak{P} (yu; [j \mathfrak{u}^{β}]), and \mathfrak{O} (me [me]), respectively.¹

Equivalence of equivalences

Theorem (Reidemeister)

Let $f_0, f_1: S^1 \hookrightarrow \mathbb{R}^3$ be tame, and let D_0, D_1 be regular diagrams representing the equivalence classes of f_0 and f_1 , respectively. Then $D_0 \cong D_1$ as diagrams iff $f_0 \cong f_1$ as embeddings.

Forest Kobayashi On Performing Countably-Many Reidemeister Moves

Equivalence of equivalences

Theorem (Reidemeister)

Let $f_0, f_1: S^1 \hookrightarrow \mathbb{R}^3$ be tame, and let D_0, D_1 be regular diagrams representing the equivalence classes of f_0 and f_1 , respectively. Then $D_0 \cong D_1$ as diagrams iff $f_0 \cong f_1$ as embeddings.

Much more computationally tractable!

Equivalence of equivalences

Theorem (Reidemeister)

Let $f_0, f_1 : S^1 \hookrightarrow \mathbb{R}^3$ be tame, and let D_0, D_1 be regular diagrams representing the equivalence classes of f_0 and f_1 , respectively. Then $D_0 \cong D_1$ as diagrams iff $f_0 \cong f_1$ as embeddings.

- ▶ Much more computationally tractable!
- ... But actually still *incredibly* difficult for large examples (even an NP solution seems out of reach for now; [Lac16])

- ▶ Problem: Reidemeister-based algorithms are massively inefficient.
- ► Solution?

- ▶ Problem: Reidemeister-based algorithms are massively inefficient.
- Solution? Seemingly-unrelated Q: In 20 seconds or less, which of the following are true?

- ▶ Problem: Reidemeister-based algorithms are massively inefficient.
- Solution? Seemingly-unrelated Q: In 20 seconds or less, which of the following are true?

1.
$$5(3^3 \cdot 11)^2 = 2 \cdot (72 + 33 - 8)$$

2. $-\frac{2}{(\sqrt{47} + \frac{1}{47})^3} = 47 - \frac{1}{47^2}$
3. $3x^4 + (x+3)(x^2 + 2x + 2) + \frac{2}{3}(x - x^2) = 2\left(x^4 + \frac{3}{2}x(x^2 - 3x)\right) + 3x$

- ▶ Problem: Reidemeister-based algorithms are massively inefficient.
- Solution? Seemingly-unrelated Q: In 20 seconds or less, which of the following are true?

1.
$$5(3^3 \cdot 11)^2 = 2 \cdot (72 + 33 - 8)$$

2. $-\frac{2}{(\sqrt{47} + \frac{1}{47})^3} = 47 - \frac{1}{47^2}$

3.
$$3x^4 + (x+3)(x^2+2x+2) + \frac{2}{3}(x-x^2) = 2\left(x^4 + \frac{3}{2}x(x^2-3x)\right) + 3x$$

- 1. Left is odd, right is even
- 2. Left is negative, right is positive
- 3. Leading coefficients don't match

Knot Invariants

- ▶ Takeaway: Coarse heuristics can save time.
- ▶ Inspired by this:

Definition (Knot Invariant)

A knot invariant assigns "nice" values to knots such that equivalent knots are guaranteed to take the same value.

Examples: Colouring invariants, knot polynomials, etc.

Forest Kobayashi

Example: Jones Polynomial

Definition (Jones Polynomial, Kauffman Bracket version)

Consider a formal polynomial in x derived from a regular diagram using the following recursive simplification process:

Rule 1:

Example: Jones Polynomial

Definition (Jones Polynomial, Kauffman Bracket version)

Consider a formal polynomial in x derived from a regular diagram using the following recursive simplification process:

Rule 2:

Motivation 00000

Example: Jones Polynomial

Definition (Jones Polynomial, Kauffman Bracket version)

Consider a formal polynomial in x derived from a regular diagram using the following recursive simplification process:

This yields a powerful invariant called the Jones polynomial.

 $\underset{\bullet}{\operatorname{Motivation}}$

Countable Reid. Moves 00000000000000

What is the Jones polynomial "doing?"

What is the Jones polynomial "doing?"

▶ Possibly more fruitful question: What is it *not* doing?

Definition (Mutation)

Let D_0 be a diagram. Select some region A of D_0 such that the knot intersects ∂A in four places. "Rotate" A by "180°" and call the resulting diagram D_1 . This move changing D_0 into D_1 is called *mutation*.

Preamble 00	Intro 00000000000000	Motivation 0€000	Countable Reid. Moves 00000000000000
Cont.			

The Jones polynomial cannot distinguish between diagrams differing by a mutation.

Cont.

- The Jones polynomial cannot distinguish between diagrams differing by a mutation.
- Observation: *mutations* sort of look like an action of D_4 .
- ▶ Many similar rules cause problems with other invariants.
- ▶ Speculation: Can we get group structure here?

My attempt

▶ Use *combinatorial* encodings.

Definition

The signed Gauss code is a full encoding of an (oriented) n-crossing diagram using 6n symbols.

My attempt

▶ Use *combinatorial* encodings.

Definition

The signed Gauss code is a full encoding of an (oriented) n-crossing diagram using 6n symbols.

Example: $1_u^+, 2_o^+, 3_u^+, 1_o^+, 2_u^+, 3_o^+$

My attempt, cont.

- Reidemeister moves can be formulated as permutations on these strings
- ▶ ... As can mutations and other similar moves.
- Typical move looks like "swap the ordering of crossing 5 and crossing 7"

The problem

- ▶ What does "swap crossing 5 and crossing 7" mean if our diagram only has 3 crossings total...?
- Desire: A way to think of *all* tame knots as if they have countably-many crossings

The problem

- ▶ What does "swap crossing 5 and crossing 7" mean if our diagram only has 3 crossings total...?
- Desire: A way to think of *all* tame knots as if they have countably-many crossings
- ▶ Solution: Add them!

How?

- Can't use Reidemeister's theorem because it assumes finiteness. Need to work directly
- ▶ Recall: Definition of equivalence

Definition (Equivalence of Embeddings in General)

Let $f_0, f_1 : X \to Y$ be embeddings. We say that f_0 is *equivalent* to f_1 if there exists a homeomorphism $h : Y \to Y$ such that $h \circ f_0 = f_1$.

 Recall: Key properties of homeomorphisms are *bijectivity* and continuity both ways

When life gives you metrics, make metricade

The idea is approximation. Lemmas we'll use:

Lemma

Let $(f_k)_{k=1}^{\infty}$ be a sequence of uniformly convergent continuous functions. Then $\lim_{k\to\infty} f_k$ is continuous.

When life gives you metrics, make metricade

The idea is approximation. Lemmas we'll use:

Lemma

Let $(f_k)_{k=1}^{\infty}$ be a sequence of uniformly convergent continuous functions. Then $\lim_{k\to\infty} f_k$ is continuous.

Lemma

Let X be compact and Y a metric space. Then if $f: X \to Y$ is bijective and continuous, it is also a homeomorphism.

When life gives you metrics, make metricade

The idea is approximation. Lemmas we'll use:

Lemma

Let $(f_k)_{k=1}^{\infty}$ be a sequence of uniformly convergent continuous functions. Then $\lim_{k\to\infty} f_k$ is continuous.

Lemma

Let X be compact and Y a metric space. Then if $f: X \to Y$ is bijective and continuous, it is also a homeomorphism.

 \blacktriangleright Idea: Use Lemma 1 to get continuity of f in hypothesis of Lemma 2

First result (kind of silly)

Corollary

Let X be compact, and for each $k \in \mathbb{N}$, let $f_k : X \to Y$ be an embedding. Suppose that the f_k converge uniformly to some f. Then if f is injective, it's also an embedding.

First result (kind of silly)

Corollary

Let X be compact, and for each $k \in \mathbb{N}$, let $f_k : X \to Y$ be an embedding. Suppose that the f_k converge uniformly to some f. Then if f is injective, it's also an embedding.

Example:

First result (kind of silly)

Corollary

Let X be compact, and for each $k \in \mathbb{N}$, let $f_k : X \to Y$ be an embedding. Suppose that the f_k converge uniformly to some f. Then if f is injective, it's also an embedding.

Example:

First result (kind of silly)

Corollary

Let X be compact, and for each $k \in \mathbb{N}$, let $f_k : X \to Y$ be an embedding. Suppose that the f_k converge uniformly to some f. Then if f is injective, it's also an embedding.

Example:

First result (kind of silly)

Corollary

Let X be compact, and for each $k \in \mathbb{N}$, let $f_k : X \to Y$ be an embedding. Suppose that the f_k converge uniformly to some f. Then if f is injective, it's also an embedding.

Example:

First result (kind of silly)

Corollary

Let X be compact, and for each $k \in \mathbb{N}$, let $f_k : X \to Y$ be an embedding. Suppose that the f_k converge uniformly to some f. Then if f is injective, it's also an embedding.

Example:

Iterative version

Theorem

Let Y be a metric space. For all $k \in \mathbb{N}$, let $h_k : Y \to Y$ be a homeomorphism and for all $n \in \mathbb{N}$, define

$$h_n = \bigotimes_{k=1}^n h_k = (h_n \circ h_{n-1} \circ \cdots \circ h_2 \circ h_1).$$

For each k let $V_k \subseteq Y$ such that h_k is identity on V_k^c . Then provided (cont. next slide)

Iterative version

Theorem (cont.)

1. The V_k satisfy

$$\lim_{n \to \infty} \left(\bigcup_{k=n}^{\infty} V_k \right) = 0,$$

2. There exists a compact $A \subseteq Y$ such that

$$\left(\bigcup_{k=1}^{\infty} V_k\right) \subseteq A^{\circ}$$

3. \hbar_{∞} defined by $\hbar_{\infty} = \lim_{n \to \infty} \hbar_n$ exists and is bijective, then \hbar_{∞} is a homeomorphism.

Idea of proof

- ▶ Just need to verify uniform convergence.
- ▶ The shrinking conditions on the V_k guarantee all but one point "stops moving" past some index n_0

Preamble 00 Intro 000000000000000 Motivation 00000 Countable Reid. Moves

Countable Reid. Moves

Example 1

Countable Reid. Moves

Countable Reid. Moves

Example 3 (hard!)

Countable Reid. Moves

Non-example: V_k don't decay properly

Motivation 00000 Countable Reid. Moves

Non-example: Bijectivity lost (subtle!!)

Motivation 00000 Countable Reid. Moves

Non-example: Bijectivity lost (subtle!!)

Motivation 00000

Non-example: Bijectivity lost (subtle!!)

Motivation 00000 Countable Reid. Moves

Non-example: Bijectivity lost (subtle!!)

Motivation 00000 Countable Reid. Moves

Non-example: Bijectivity lost (subtle!!)

Motivation 00000 Countable Reid. Moves

Non-example: Bijectivity lost (subtle!!)

Countable Reid. Moves 00000000000000000

Towards a Countable Reidemeister Theorem

Definition (Discrete Diagram)

A discrete diagram for a knot $f:S^1 \hookrightarrow \mathbb{R}^3$ has

- 1. Topologically discrete crossing-points,
- 2. Only two strands intersecting at any given crossing,
- 3. Only "transverse" crossings.

Countable Reid. Moves

Towards a Countable Reidemeister Theorem

Definition (Discrete Diagram)

A discrete diagram for a knot $f:S^1 \hookrightarrow \mathbb{R}^3$ has

- 1. Topologically discrete crossing-points,
- 2. Only two strands intersecting at any given crossing,
- 3. Only "transverse" crossings.

Theorem (Countable polygonal knot)

Let $f: S^1 \hookrightarrow \mathbb{R}^3$ have a discrete diagram. Then f is equivalent to a knot comprised of a countable union of straight line segments.

Proof: Unpleasant!

Conjecture!

Define the $extended\ Reidemeister\ moves$ to be the original set together with a fourth move

where in the above, A is a compact set whose interior remains fixed relative to its boundary.

Let $f_0, f_1 : S^1 \hookrightarrow \mathbb{R}^3$ admit discrete diagrams D_0, D_1 . Then $f_1 \cong f_2$ iff there exists a countable sequence of Reidemeister moves satisfying (slightly-modified versions of) the decay conditions on the V_k that take D_0 to D_1 .

References I

- Forest D. Kobayashi, *Where the Wild Knots Are*, Bachelor's thesis, Harvey Mudd College, Claremont, CA, May 2020.
- Forest Kobayashi, Uniform Convergence and Knot Equivalence, arXiv (2021).
 - Marc Lackenby, *Elementary knot theory*, arXiv (2016).

